


## **GOODHEART-WILLCOX PUBLISHER**

# GEORGIA DEPARTMENT OF EDUCATION 2011 LEARNING RESOURCES RECOMMENDATION PROCESS GRADES 6-12 CAREER, TECHNICAL AND AGRICULTURAL EDUCATION (CTAE)

### **INSTRUCTIONAL MATERIAL CORRELATION**

Course: Energy and Power Technology (21.45100) Text: *Energy, Power, and Transportation Technology* ©2012



#### FORMAT FOR CORRELATION TO THE GEORGIA PERFORMANCE STANDARDS

Subject Area: Career, Technical & Agricultural Education State-Funded Course: 21.45100 Energy and Power Technology

Textbook Title: *Energy, Power, and Transportation Technology* 

**Publisher:** Goodheart-Willcox Publisher

*The Georgia Performance Standards for Grades 6-12 Career, Technical and Agricultural Education (CTAE) may be accessed on-line at: <u>http://www.georgiastandards.org/</u>.* 

\_\_\_\_\_

| Stan    |        | Standard                                        | Where Taught                                                                     |
|---------|--------|-------------------------------------------------|----------------------------------------------------------------------------------|
| (Cite N |        | (Cite specific standard)                        | (If print component, cite page number; if non-print, cite appropriate location.) |
| ENGR    | R-EP-1 | Students will utilize the ideas of energy,      |                                                                                  |
|         |        | work, power, and force to explain how           |                                                                                  |
|         |        | systems convert, control, transmit, and/or      |                                                                                  |
|         |        | store energy and power.                         |                                                                                  |
|         | a.     | Describe processes by which energy stored in    | 40–50, 75–92, 97–117, 121–138                                                    |
|         |        | a system may be used to do work.                |                                                                                  |
|         | b.     | Use Newton's Laws to calculate the net force    | 535, 573                                                                         |
|         |        | acting or exerted by a system.                  |                                                                                  |
|         | с.     | Determine the amount of work done by or on      | 144–156                                                                          |
|         |        | a system.                                       |                                                                                  |
|         | d.     | Outline the difference between energy and       | 24–28                                                                            |
|         |        | power.                                          |                                                                                  |
|         | e.     | Give examples of how conduction,                | 126, 133                                                                         |
|         |        | convection, and radiation are considered in     |                                                                                  |
|         |        | the selection of materials for buildings and in |                                                                                  |
|         |        | the design of a heating system.                 |                                                                                  |
| ENGR    | R-EP-2 | Students explain how simple machines are        |                                                                                  |
|         |        | used to do work.                                |                                                                                  |
|         | a.     | Calculate the mechanical advantage for          | 217–223                                                                          |
|         |        | different types of simple machines.             |                                                                                  |
|         | b.     | Show through calculation or build models        | 201–223                                                                          |
|         |        | how simple machines affect the amount of        |                                                                                  |
|         |        | work necessary to complete a task.              |                                                                                  |
|         | c.     | Compare and contrast the ideal and actual       | 217–233                                                                          |
|         |        | mechanical advantage for different types of     |                                                                                  |

#### FORMAT FOR CORRELATION TO THE GEORGIA PERFORMANCE STANDARDS

Subject Area: Career, Technical & Agricultural Education State-Funded Course: 21.45100 Energy and Power Technology

#### Textbook Title: *Energy, Power, and Transportation Technology*

**Publisher:** Goodheart-Willcox Publisher

*The Georgia Performance Standards for Grades 6-12 Career, Technical and Agricultural Education (CTAE) may be accessed on-line at: <u>http://www.georgiastandards.org/</u>.* 

|           | simple machines and explain the impact of         |         |
|-----------|---------------------------------------------------|---------|
|           | these differences in the design of machine.       |         |
| d.        | Determine the relationship of force and speed     | 217–22  |
|           | when either is changed by the advantage of a      |         |
|           | mechanical device.                                |         |
| ENGR-EP-3 | Students will differentiate between fluid         |         |
|           | power systems and apply the laws that             |         |
|           | govern each.                                      |         |
| a.        | Explain the difference between open fluid         |         |
|           | systems (e.g., irrigation, forced hot air system, |         |
|           | air compressors) and closed fluid systems         |         |
|           | (e.g., force hot water system, hydraulic          |         |
|           | brakes).                                          |         |
| b.        | Explain what is meant by fluid power.             | 227–228 |
| с.        | Compare and contrast how the volume of a          | 242–243 |
|           | gas varies with the changes in pressure and       |         |
|           | temperature.                                      |         |
| d.        | Describe how a fluid is able to transfer force    | 230–232 |
|           | as well as change the relationship between        |         |
|           | force and distance or speed.                      |         |
| e.        | Calculate the ability of a hydraulic system to    | 242–243 |
|           | multiply distance, force and effect directional   |         |
|           | change.                                           |         |
| f.        | Solve mathematical problems involving             | 248–250 |
|           | changes in pressure, temperature, and volume      |         |
|           | in fluid power systems.                           |         |
| ENGR-EP-4 | Students will differentiate between AC and        |         |
|           | DC circuits and apply Ohm's and                   |         |

#### FORMAT FOR CORRELATION TO THE GEORGIA PERFORMANCE STANDARDS

Subject Area: Career, Technical & Agricultural Education State-Funded Course: 21.45100 Energy and Power Technology

#### Textbook Title: *Energy, Power, and Transportation Technology*

**Publisher:** Goodheart-Willcox Publisher

*The Georgia Performance Standards for Grades 6-12 Career, Technical and Agricultural Education (CTAE) may be accessed on-line at: <u>http://www.georgiastandards.org/</u>.* 

\_\_\_\_\_

|           | Kirchoff's Laws.                               |                  |
|-----------|------------------------------------------------|------------------|
| a.        | Compare and contrast the characteristics of    | 165–166          |
|           | alternating current and direct current and the |                  |
|           | implications of the use of each form on work   |                  |
|           | and power.                                     |                  |
| b.        | Explain differences between series and         | 174–177          |
|           | parallel circuits.                             |                  |
| с.        | Explain the relationship of voltage, current,  | 168–170          |
|           | and resistance.                                |                  |
| d.        | Use Ohm's and Kirchoff's laws to calculate     | 168–170, 175–177 |
|           | the rate at which work is being done by an     |                  |
|           | electric component in a DC circuit.            |                  |
| ENGR-EP-5 | Students will describe the basic               |                  |
|           | components of a small engine and explain       |                  |
|           | the difference between a 4-stroke and 2-       |                  |
|           | stroke engine.                                 |                  |
| a.        | Compare and contrast the advantages and        | 323–236          |
|           | disadvantages of the two and four cycle        |                  |
|           | engines.                                       |                  |
| b.        | Explain the concept of valve timing.           | 331–332          |
| с.        | Compare the lubrication system in a four-      | 323–326, 328–330 |
|           | cycle engine to the system of a two-cycle      |                  |
|           | engine.                                        |                  |
| d.        | Describe the two-stroke engine operation and   | 325–326          |
|           | explain the principles of two-cycle operation. |                  |
| e.        | Disassemble and reassemble a basic small       | 342              |
|           | engine.                                        |                  |